76 research outputs found

    Remote ID for Rapid Assessment of Flight and Vehicle Information

    Get PDF
    The ability to rapidly identify UAS (Unmanned Aircraft Systems) in the field has emerged as a critical need for the integration of small UASs into the national airspace and counter-UAS operations. This paper proposes an architecture for rapid retrieval of UAS information leveraging NASA's current Unmanned Aircraft System (UAS) Traffic Management (UTM) system. The proposed architecture utilizes UTM components: FIMS (Flight Information Management System), USS (UAS Service Supplier), and vehicle registration and model database in order to provide assessment of the UAS reported in the field including the ability to distinguish between participating and non- participating UTM actors. Detailed system descriptions are provided and preliminary results from field tests conducted during UTM TCL (Technical Capability Level) 3 are discussed. It is found that 94 percent of the remote ID look-ups were successful. The average time of a look-up is found to be 1.2 seconds. Failure cases are examined and recommendations on next steps to advance UAS remote identification are provided

    NASA UAS Traffic Management National Campaign Operations across Six UAS Test Sites

    Get PDF
    NASA's Unmanned Aircraft Systems Traffic Management research aims to develop policies, procedures, requirements, and other artifacts to inform the implementation of a future system that enables small drones to access the low altitude airspace. In this endeavor, NASA conducted a geographically diverse flight test in conjunction with the FAA's six unmanned aircraft systems Test Sites. A control center at NASA Ames Research Center autonomously managed the airspace for all participants in eight states as they flew operations (both real and simulated). The system allowed for common situational awareness across all stakeholders, kept traffic procedurally separated, offered messages to inform the participants of activity relevant to their operations. Over the 3- hour test, 102 flight operations connected to the central research platform with 17 different vehicle types and 8 distinct software client implementations while seamlessly interacting with simulated traffic

    UAS Service Supplier Specification

    Get PDF
    Within the Unmanned Aircraft Systems (UAS) Traffic Management (UTM) system, the UAS Service Supplier (USS) is a key component. The USS serves several functions. At a high level, those include the following: Bridging communication between UAS Operators and Flight Information Management System (FIMS) Supporting planning of UAS operations Assisting strategic deconfliction of the UTM airspace Providing information support to UAS Operators during operations Helping UAS Operators meet their formal requirements This document provides the minimum set of requirements for a USS. In order to be recognized as a USS within UTM, successful demonstration of satisfying the requirements described herein will be a prerequisite. To ensure various desired qualities (security, fairness, availability, efficiency, maintainability, etc.), this specification relies on references to existing public specifications whenever possible

    Remote ID for Rapid Assessment of Flight and Vehicle Information

    Get PDF
    The ability to rapidly identify UAS in the field has emerged as a critical need for the integration of small UASs into the national airspace and counter-uas operations. This paper proposes an architecture for rapid retrieval of UAS information leveraging NASA's current Unmanned Aircraft System (UAS) Traffic Management (UTM) system. The proposed architecture utilizes UTM components: FIMS (Flight Information Management System), USS (UAS Service Supplier), and vehicle registration and model database in order to provide assessment of the UAS reported in the field including the ability to distinguish between participating and non- participating UTM actors. Detailed system descriptions are provided and preliminary results from field tests conducted during UTM TCL (Technical Capability Level) 3 are discussed. It is found that 94% of the remote ID look-ups were successful. The average time of a look-up is found to be 1.2 seconds. Failure cases are examined and recommendations on next steps to advance UAS remote identification are provided

    Prevalence of crystalluria and its association with Escherichia coli urinary tract infections

    Get PDF
    Background: Some studies highlighted that there was increase in the incidence of urinary tract problems related to frequent Urinary Tract Infections (UTIs) and crystalluria. This induces us to understand the prevalence of crystals in urine samples and its association with bacterial urinary tract infections. For determining the different types of urinary crystals, the role of microscopic examination for identification are routine and identical.Methods: The main objective of this study is to find out the predominant types of crystals in urine, age and sex incidence value, urine pH correlated with crystals and bacteriological examination of urine samples associated with UTIs.   Results: Among 88 urine samples included, 49 (55.6%) were males and 39 (44.3%) were females of different age groups. By urine sediment analysis, among the normal crystals, calcium oxalate and amorphous urates were found predominant followed by cholesterol found among abnormal crystals. The results highlighted the presence of different types of crystals in the urine samples and strongly supported the pH ranges. The variations in the pH range from 3 to 7. The correlation of the results of crystal formation with bacterial culture showed predominance of Escherichia coli (19.3%) and further it gets proved with the theory and reference interpretation.Conclusion: By this study, the authors have a mystery whether the crystal formation leads to the bacterial infection or the infection leads to crystal formation. In the case of positive urine crystal analysis, the clinicians may consider the microbiological investigations to find out the real picture.  

    UTM Data Working Group Demonstration 1: Final Report

    Get PDF
    This document summarizes activities defining and executing the first demonstration of the NASA-FAA Research Transition Team (RTT) Data Exchange and Information Architecture (DEIA) working group (DWG). The demonstration focused on testing the interactions between two key components in the future UAS Traffic Management (UTM) System through a collaborative and distributed simulation of key scenarios. The summary incorporates written feedback from each of the participants in the demonstration. In addition to reporting the activities, this report also provides some insight into future steps of this working group

    UTM UAS Service Supplier Development: Sprint 2 Toward Technical Capability Level 4

    Get PDF
    NASA's UAS Traffic Management (UTM) Project has been tasked with developing concepts and initial implementations for integrating and managing small unmanned aircraft systems (UAS) into the low altitude airspace. To accomplish this task, the UTM Project planned a phased approach based on four Technical Capability Levels (TCLs). As of this writing, TCL4 is currently in development for a late Spring 2019 flight demonstration. This TCL is focused on operations in an urban environment and includes the handling of high density environments, large-scale off-nominal conditions, vehicle-to-vehicle communications, detect-and-avoid technologies, communication requirements, public safety operations, airspace restrictions, and other related goals. Through research and testing to date, NASA has developed an architecture for UTM that depends on commercial entities collaboratively providing services that are traditionally provided by the Air Navigation Service Provider (ANSP) in manned aviation. A key component of this architecture is the UAS Service Supplier (USS), which acts as a communications bridge between UAS operators and the ANSP when necessary. In addition, the collection of USSs form a USS Network to collaboratively manage the airspace through the sharing of data and the adherence to a standard or set of standards required to participate in this USS Network. This document provides a record of the second of four planned steps in the development of interoperable USSs that will ultimately support TCL4 flight testing and formalization of the overall UTM concept. To develop these USSs and their underlying specifications, NASA has planned a series of "Sprints" to work with industry partners in implementing the features and develop proposed specifications for USSs in order to to participate in TCL4. This report describes Sprint Two. In this Sprint, there was a major theme with four goals. The theme was the development and testing of a new USS discovery system, to better enable USSs to find and communicate with each other. The goals supporting this theme were: participants needed to implement and exercise the discovery service for USS-USS communications; USSs needed to demonstrate strategic deconfliction through operation sharing; the systems were to use discovery to aid in handling off-nominal operations; and finally, there was an investigation of an initial off-nominal reporting capability

    UTM UAS Serivce Supplier Development: Sprint 1 Toward Technical Capability Level 4

    Get PDF
    NASA's UAS Traffic Management (UTM) Project has been tasked with developing concepts and initial implementations for integrating and managing small unmanned aircraft systems (UAS) into the low altitude airspace. To accomplish this task, the Project planned a phased approach based on four Technical Capability Levels (TCLs). As of this writing, TCL4 is currently in development for a late Spring 2019 flight demonstration. This TCL is focused on operations in an urban environment and includes the handling of high density and large-scale off-nominal conditions, vehicle-to-vehicle communications, detect-and-avoid technologies, communication requirements, public safety operations, airspace restrictions, and other related goals. Through research and testing to date, NASA has developed an architecture for UTM that depends on commercial entities collaboratively providing services that are traditionally provided by the Air Navigation Service Provider(ANSP) in manned aviation. A key component of this architecture is the UAS Service Supplier (USS), which acts as a communications bridge between UAS operators and the ANSP when necessary. In addition, the collection of USSs form a USS Network to collaboratively manage the airspace through the sharing of data and the adherence to a standard or set of standards required to participate in this USS Network. This document provides a record of the first step in the development of interoperable USSs that will ultimately support TCL4 flight testing and formalization of the overall UTM concept. To develop these USSs and the underlying specifications for them, NASA has planned a series of "Sprints" to work with industry partners in implementing the features and proposed specifications for USSs to participate in TCL4. This report describes Sprint One. In this Sprint, the focus was on establishing a baseline for the Application Programming Interfaces (APIs) and their associated data models. In addition, the concept of UAS Volume Reservations (UVR) (areas that impose restrictions on sUAS that are allowed to operate) was tested. NASA provided the specifications and iterated on them with partners while implementers developed to those specifications. NASA then tested each partner's implementation to ensure compatibility with all other implementers. This process helped all stakeholders gain confidence that the foundation for future Sprints was solid

    UTM TCL2 Software Requirements

    Get PDF
    The Unmanned Aircraft Systems (UAS) Traffic Management (UTM) Technical Capability Level (TCL) 2 software implements the UTM TCL 2 software requirements described herein. These software requirements are linked to the higher level UTM TCL 2 System Requirements. Each successive TCL implements additional UTM functionality, enabling additional use cases. TCL 2 demonstrated how to enable expanded multiple operations by implementing automation for beyond visual line-of-sight, tracking operations, and operations flying over sparsely populated areas

    Whole genome analysis of Rhizopus species causing rhino-cerebral mucormycosis during the COVID-19 pandemic

    Get PDF
    IntroductionMucormycosis is an acute invasive fungal disease (IFD) seen mainly in immunocompromised hosts and in patients with uncontrolled diabetes. The incidence of mucormycosis increased exponentially in India during the SARS-CoV-2 (henceforth COVID-19) pandemic. Since there was a lack of data on molecular epidemiology of Mucorales causing IFD during and after the COVID-19 pandemic, whole genome analysis of the Rhizopus spp. isolated during this period was studied along with the detection of mutations that are associated with antifungal drug resistance.Materials and methodsA total of 50 isolates of Rhizopus spp. were included in this prospective study, which included 28 from patients with active COVID-19 disease, 9 from patients during the recovery phase, and 13 isolates from COVID-19-negative patients. Whole genome sequencing (WGS) was performed for the isolates, and the de novo assembly was done with the Spades assembler. Species identification was done by extracting the ITS gene sequence from each isolate followed by searching Nucleotide BLAST. The phylogenetic trees were made with extracted ITS gene sequences and 12 eukaryotic core marker gene sequences, respectively, to assess the genetic distance between our isolates. Mutations associated with intrinsic drug resistance to fluconazole and voriconazole were analyzed.ResultsAll 50 patients presented to the hospital with acute fungal rhinosinusitis. These patients had a mean HbA1c of 11.2%, and a serum ferritin of 546.8 ng/mL. Twenty-five patients had received steroids. By WGS analysis, 62% of the Rhizopus species were identified as R. delemar. Bayesian analysis of population structure (BAPS) clustering categorized these isolates into five different groups, of which 28 belong to group 3, 9 to group 5, and 8 to group 1. Mutational analysis revealed that in the CYP51A gene, 50% of our isolates had frameshift mutations along with 7 synonymous mutations and 46% had only synonymous mutations, whereas in the CYP51B gene, 68% had only synonymous mutations and 26% did not have any mutations.ConclusionWGS analysis of Mucorales identified during and after the COVID-19 pandemic gives insight into the molecular epidemiology of these isolates in our community and establishes newer mechanisms for intrinsic azole resistance
    • …
    corecore